Processing math: 100%

Basics on the work with vegetation-plots in vegtable

R vegetation

The package vegtable was developed for the handling of data provided by vegetation-plot databases in single objects within R sessions. In this package functions attempt to encapsulate process of complex data sets in brief command-lines during an R session and target to repeatability in the assessment of floristic information. Here we review through some examples the use of the most important functions implemented in vegtable.

Author

Affiliation

Miguel Alvarez ORCID ID

 

Published

Nov. 20, 2020

DOI

Installation

Both packages taxlist and vegtable are released in the Comprehensive R Archive Network (CRAN). Since taxlist is a dependency of vegtable, both will be installed in the following command:

install.packages("vegtable", dependencies = TRUE)

Alternatively, you can install the development versions from their repositories at GitHub.

library(devtools)
install_github("ropensci/taxlist", build_vignettes = TRUE)
install_github("kamapu/vegtable")

An additional package including some example data required for this session have also to be installed from GitHub.

install_github("kamapu/sanmartin1998")

Working with species lists only

Before starting with the work, do not forget to load the installed packages into your R-session:

library(vegtable)
library(sanmartin1998)

In this first section we focus on the taxlist objects, which are specialized for handling taxonomic lists. For more details on the theory behind this package, see .

The package taxlist includes a own data set called Easplist.

Easplist
object size: 761.4 Kb 
validation of 'taxlist' object: TRUE 

number of taxon usage names: 5393 
number of taxon concepts: 3887 
trait entries: 311 
number of trait variables: 1 
taxon views: 3 

concepts with parents: 3698 
concepts with children: 1343 

hierarchical levels: form < variety < subspecies < species < complex < genus < family 
number of concepts in level form: 2
number of concepts in level variety: 95
number of concepts in level subspecies: 71
number of concepts in level species: 2521
number of concepts in level complex: 1
number of concepts in level genus: 1011
number of concepts in level family: 186

The information stored in a taxlist object is organized in four column-oriented tables following a relational model and allocated in own slots within the object. The access to the respective slots in R is done with the symbol @ or alternatively using the function slot().

head(Easplist@taxonNames)
  TaxonUsageID TaxonConceptID              TaxonName
1            1              1 Abelmoschus esculentus
2        52313              1    Hibiscus esculentus
3            2              2       Abutilon indicum
4            3              3   Abutilon mauritianum
5        50361              3         Pavonia patens
6            4              4   Acacia drepanolobium
            AuthorName
1          (L.) Moench
2                   L.
3                 (L.)
4       (Jacq.) Medik.
5     (Andrews) Chiov.
6 Harms ex Y. Sjöstedt
head(Easplist@taxonRelations)
  TaxonConceptID AcceptedName Basionym Parent   Level ViewID
1              1            1       NA  54753 species      1
2              2            2       NA  54754 species      1
3              3            3       NA  54754 species      1
4              4            4       NA  54755 species      1
5              5            5       NA  54755 species      1
6              6            6       NA  54755 species      1
head(Easplist@taxonTraits)
  TaxonConceptID          life_form
1              7       phanerophyte
2              9       phanerophyte
3             18 facultative_annual
4             20 facultative_annual
5             21    obligate_annual
6             22        chamaephyte
head(Easplist@taxonViews)
  ViewID                                 secundum view_bibtexkey
1      1            African Plant Database (2012)  CJBGSANBI2012
2      2 Taxonomic Name Resolution Service (2018)       TNRS2018
3      3                    The Plant List (2013)        TPL2013

Summaries

The function summary() can be used to query information of a taxon or a set of taxa.

summary(Easplist, ConceptID = "Typha domingensis", secundum = "secundum",
    exact = TRUE)
------------------------------ 
concept ID: 50105 
view ID: 1 - African Plant Database (2012) 
level: species 
parent: 55040 Typha L. 

# accepted name: 
50105 Typha domingensis Pers. 

# synonyms (9): 
51999 Typha australis Schumach. 
53124 Typha angustifolia ssp. australis (Schumach.) Graebn. 
53125 Typha aequalis Schnizl. 
53126 Typha angustata Bory & Chaub. 
53127 Typha angustifolia ssp. angustata (Bory & Chaub.) Briq. 
53128 Typha angustata var. abyssinica Graebn. 
53129 Typha angustata var. aethiopica Rohrb. 
53130 Typha aethiopica (Rohrb.) Kronfeldt 
53131 Typha schimperi Rohrb. 
------------------------------

In this command line the parameter ConceptID is used to query a taxon name. The parameter secundum is set to the name of a column in slot taxonViews that will be appended to the taxon view ID, which may not be informative alone. The setting exact = TRUE indicates that the queried name have to be a perfect match to the taxon usage names in the data set, otherwise sub-specific taxa of the queried species may be also retrieved. The command retrieves the ID of the queried taxon, the ID of the taxon view , the taxonomic rank, the ID and name of the parent taxon (if suitable), the accepted name and a listing of synonyms.

Note in the display that the taxon concept ID and the ID of the parent refer to their taxon concept IDs, which is the primary key at slot taxonRelations, while the IDs in front of the accepted name and synonyms refer to the IDs of the respective taxon usage names, which is the primary key at slot taxonNames.

You can also display an indented list with the following command.

indented_list(Easplist, "Typha")
Typhaceae 
 Typha L.
   Typha capensis (Rohrb.) N.E. Br.
   Typha latifolia L.
   Typha domingensis Pers. 

The function print_name() can be used to format scientific names when writing rmarkdown documents. The following example is adapted from the documentation of the function. Note in the example that the option style = "expression" is meant to be used in plot devices.

## Accepted name with author
print_name(Easplist, 363, style = "expression")
expression(italic("Ludwigia adscendens") ~ "ssp." ~ italic("diffusa")~"(Forssk.) P.H. Raven")
## Including taxon view
print_name(Easplist, 363, style = "expression", secundum = "secundum")
expression(italic("Ludwigia adscendens") ~ "ssp." ~ italic("diffusa")~"(Forssk.) P.H. Raven"~"sec. African Plant Database (2012)")
## Second mention in text
print_name(Easplist, 363, style = "expression", second_mention = TRUE)
expression(italic("L. adscendens") ~ "ssp." ~ italic("diffusa")~"(Forssk.) P.H. Raven")
## Using name ID
print_name(Easplist, 50037, style = "expression", concept = FALSE)
expression(italic("Ludwigia stolonifera")~"(Guill. & Perr.) P.H. Raven")
## Markdown style
print_name(Easplist, 363, style = "markdown")
[1] "*Ludwigia adscendens* ssp. *diffusa* (Forssk.) P.H. Raven"
## HTML style
print_name(Easplist, 363, style = "html")
[1] "<i>Ludwigia adscendens</i> ssp. <i>diffusa</i> (Forssk.) P.H. Raven"
## LaTeX style for knitr
print_name(Easplist, 363, style = "knitr")
[1] "\\textit{Ludwigia adscendens} ssp. \\textit{diffusa} (Forssk.) P.H. Raven"

Working with vegetation-plots

Further examples will be applied to a data set available at the installed package sanmartin1998, which corresponds to plot observations in grasslands and semi-aquatic communities from Temuco, Chile. This data set was originally published by and is stored in the database sudamerica .

releves
## Metadata 
   db_name: sudamerica
   description: Database for vegetation-plots from South America.
   taxonomy: sam_splist
   bibtexkey: NA
   object size: 195.8 Kb 
   validity: TRUE 

## Content 
   number of plots: 80 
   plots with records: 80 
   variables in header: 13 
   number of relations: 2 

## Taxonomic List 
   taxon names: 548 
   taxon concepts: 199 
   validity: TRUE 

Structure

Objects of class vegtable are structured into 8 slots, where the slots species, header, and samples are the essential ones.

The taxonomic list is handled as a taxlist object and is located at the slot species:

summary(releves@species)
object size: 98 Kb 
validation of 'taxlist' object: TRUE 

number of taxon usage names: 548 
number of taxon concepts: 199 
trait entries: 85 
number of trait variables: 8 
taxon views: 10 

concepts with parents: 164 
concepts with children: 113 

hierarchical levels: form < variety < subspecies < species < section < subgenus < genus < subfamily < family < phylum 
number of concepts in level form: 0
number of concepts in level variety: 6
number of concepts in level subspecies: 1
number of concepts in level species: 86
number of concepts in level section: 0
number of concepts in level subgenus: 0
number of concepts in level genus: 71
number of concepts in level subfamily: 0
number of concepts in level family: 35
number of concepts in level phylum: 0

The slot header is simply a data frame including information related to single plot observations, for instance size of the plot, record date, results of soil analyses, etc.

head(releves@header)
    ReleveID table_number column_number plot_size plot_length
445     6091            3             1        25          NA
469     6115            3             2        25          NA
470     6116            3            13        25          NA
592     6234            2             8        25          NA
593     6235            2            10        25          NA
594     6236            2            11        25          NA
    plot_width elevation community_type page_number    db_name
445         NA       163            565         105 sudamerica
469         NA       163            565         105 sudamerica
470         NA       199            565         105 sudamerica
592         NA       199            534         104 sudamerica
593         NA        77            534         104 sudamerica
594         NA       168            534         104 sudamerica
    data_source longitude latitude
445          29  -72.7201 -38.6727
469          29  -72.7201 -38.6727
470          29  -72.7341 -38.6310
592          29  -72.7341 -38.6310
593          29  -72.7440 -38.6846
594          29  -72.6958 -38.7141

Records of species in plots are stored in slot samples. Against the commonly used cross tables (species by plots or plots by species), this slot is organized in columns (column-oriented table, a.k.a database list).

head(releves@samples)
      record_id ReleveID TaxonUsageID cover_percentage
10575    138697     7285        20972             15.0
10576    138698     7285        23744             60.0
10577    138699     7285         9373             20.0
10578    138700     7285       196060              0.5
10579    138701     7285        35072              5.0
10580    138702     7285         9953              0.5

The slot coverconvert have an own, homonymous class and is used as container for cover conversion tables. These tables can be used for conversion of cover codes, which will be done by the function transform(). The example on releves does not include cover conversion tables but the data set installed with vegtable does it.

summary(Kenya_veg@coverconvert)
## Number of cover scales: 3 

* scale 'br_bl': 
  Levels    Range
1      r    0 - 1
2      +    0 - 1
3      1    1 - 5
4      2   5 - 25
5      3  25 - 50
6      4  50 - 75
7      5 75 - 100

* scale 'b_bbds': 
  Levels    Range
1      r    0 - 1
2      +    0 - 1
3      1    1 - 5
4     2m    1 - 5
5     2a   5 - 15
6     2b  15 - 25
7      3  25 - 50
8      4  50 - 75
9      5 75 - 100

* scale 'ordin.': 
  Levels    Range
1      1    0 - 1
2      2    0 - 1
3      3    1 - 5
4      4    1 - 5
5      5   5 - 15
6      6  15 - 25
7      7  25 - 50
8      8  50 - 75
9      9 75 - 100

The slot relations is a list of data frames that provide additional information for classes of categorical variables stored in slot header. These tables correspond to pop-up tables of Turboveg 2.

names(releves@relations)
[1] "community_type" "data_source"   
head(releves@relations$community_type)
  community_type
1            298
2            305
3            307
4            310
5            313
6            315
                                                       community_name
1            Loudetia phragmitoides-Hyparrhenia bracteata-communities
2                                             Loudetio-Fimbristyletum
3                                            Euphorbieto-Portulacetum
4                                 Amaranthus sp- Synedrella nodiflora
5                               Pennisetum purpureum-Acalypha ciliata
6 Sporobolus festivus-Hysanthes trichotoma (sous-association typique)

While in the header table such categorical variables may be cryptic, there is an option to insert columns from relations into header by using relation2header(). By this way, yo do not only see a community id, which is just a number, but you can also see the respective names of the plant communities that correspond to the syntaxa assigned to the plots originally by the publication.

releves <- relation2header(releves, "community_type")
head(releves@header)
    ReleveID table_number column_number plot_size plot_length
445     6091            3             1        25          NA
469     6115            3             2        25          NA
470     6116            3            13        25          NA
592     6234            2             8        25          NA
593     6235            2            10        25          NA
594     6236            2            11        25          NA
    plot_width elevation community_type page_number    db_name
445         NA       163            565         105 sudamerica
469         NA       163            565         105 sudamerica
470         NA       199            565         105 sudamerica
592         NA       199            534         104 sudamerica
593         NA        77            534         104 sudamerica
594         NA       168            534         104 sudamerica
    data_source longitude latitude
445          29  -72.7201 -38.6727
469          29  -72.7201 -38.6727
470          29  -72.7341 -38.6310
592          29  -72.7341 -38.6310
593          29  -72.7440 -38.6846
594          29  -72.6958 -38.7141
                            community_name
445 Mentho pulegium-Agrostietum capillaris
469 Mentho pulegium-Agrostietum capillaris
470 Mentho pulegium-Agrostietum capillaris
592                       Juncetum proceri
593                       Juncetum proceri
594                       Juncetum proceri

Statistics

The packages vegtable and taxlist are rather specialized on data manipulation than on data analysis. Nevertheless some common descriptive statistics and summaries that can be used for further statistical analyses are implemented.

Trait proportions

In this data set, for instance, life forms are inserted as attributes of the recorded species. Since this attribute is a categorical variable, summaries at the plot level can only be done as proportions. The function trait_proportion() is suitable for such kind of summaries. Note that the best way to collect statistics calculated for plots is adding them as new columns into the slot header, which is done by the option in_header=TRUE. Additionally, the option weight="cover_percentage" is indicating that the cover percentage stored in the slot samples will be used as weight for the respective life from classes.

releves <- trait_proportion(trait="life_form", object=releves,
    head_var="ReleveID", include_nas=FALSE, weight="cover_percentage",
    in_header=TRUE)

By default, the function added at slot header one column per level in the traits variable appending a suffix (default _prop). Just to remind you, we used the function relation2header() in order to add the names of the recorded communities in the slot header.

# Add community names to the header table
releves <- relation2header(releves, relation="community_type")

# Display mean values per plant communities
aggregate(annual_prop ~ community_name, data=releves@header, FUN=mean)
                                community_name annual_prop
1                     Anthoxanthum utriculatum 0.007826989
2                  Eleocharietum macrostachyae 0.096678841
3                    Eleocharietum pachycarpae 0.092635324
4        Eleocharis pachycarpa-Lythrum portula 0.173790650
5                      Glycerietum multiflorae 0.000000000
6  Gnaphalio cymatoidis-Polygonetum piperoidis 0.650889962
7                             Juncetum proceri 0.001167405
8             Junco proceri-Caricetum ripariae 0.000000000
9   Ludwigia peploides-Sagittaria montevidense 0.000000000
10      Mentho pulegium-Agrostietum capillaris 0.041020366
11                             Phyla nodiflora 0.958893907
# The same information as boxplot
par(mar=c(5, 20, 1, 1), las=1)
boxplot(annual_prop ~ community_name, data=releves@header, horizontal=TRUE,
    xlab="Proportion of annuals", ylab="")

Before you continue, note that the first argument in the function is a formula indicating on the left a response as left term (in this case the statistic describing a categorical trait variable) and the factors as right terms (grouping variables for the plots). This kind of objects will be frequently used in functions dealing with vegtable objects.

Trait Statistics

For numerical taxonomic traits statistical parameters such as averages and standard deviation can be calculated per plot. For instance the data set releves is also including Ellenberg’s indicator values , which were collected from and .

The calculation of trait statistics is done by the function trait_stats(). In the parameter FUN we can use a statistical function such as mean() but we can also define an statistic using the cover values as weights for the calculation. In this case we can calculate weighted means:

ˉx=xiwiwi

Here ˉx is the mean indicator figure for a plot, xi is the indicator value of the ith species in this plot, and wi is the weight of the same species (cover value) in the plot. In R we define it as a function:

weighted_mean <- function(x, w, ...) sum(x*w, ...)/sum(w, ...)

In the function trait_stats() we can query indicator figures through a formula. Note that this formula may include multiple variables on the left terms for the simultaneous calculation of indicator values.

releves <- trait_stats(ind_n + ind_h ~ ReleveID, releves,
    FUN=weighted_mean,  include_nas=FALSE, weight="cover_percentage",
    suffix="_wmean", in_header=TRUE)

The resulting values may be useful to compare different plant communities or to test relationships between different variables, for instance an expected correlation between the humidity indicator and the proportion of annuals.

par(mar=c(5, 20, 1, 1), las=1)
boxplot(ind_h_wmean ~ community_name, data=releves@header, horizontal=TRUE,
    xlab="H figure (weighted mean)", ylab="")

# Linear regression model
Mod <- lm(annual_prop ~ ind_h_wmean, data=releves@header)

# plot
plot(releves@header[,c("ind_h_wmean", "annual_prop")], xlab="H figure",
    ylab="Proportion of annuals", pch=20, col="darkgrey")
abline(Mod, lty=2, col="red")

Well, it is not a nice distribution of observations but still suggesting a negative tendency in the proportion of annuals by increasing humidity indicator, as expected.

Statistics from taxonomic information

Taxonomic information (taxonomic ranks and parent-child relationships) are not directly available for statistical descriptions in taxlist objects. If we need to calculate proportions of determined genera or families in the plots, we can pass the taxonomy to the taxon traits table with the function tax2traits(). You need to set get_names=TRUE, otherwise only taxon IDs (numbers) will be inserted in the traits table.

releves@species <- tax2traits(releves@species, get_names=TRUE)
head(releves@species@taxonTraits)
   TaxonConceptID origin_status life_form ind_l ind_t ind_r ind_n
2           57184        native perennial    NA    NA    NA    NA
10          57504        native perennial     6     5     4     3
17          58062        native perennial    NA    NA    NA    NA
41          61842          <NA>      <NA>     8     6     5     7
43          61852          <NA>      <NA>     6     7    NA     8
44          61853     adventive perennial     8     5     5     5
   ind_h ind_s variety subspecies                species
2     NA    NA    <NA>       <NA>      Adesmia corymbosa
10     6    NA    <NA>       <NA>      Dichondra sericea
17    NA    NA    <NA>       <NA>     Setaria parviflora
41    12    NA    <NA>       <NA>  Callitriche palustris
43     5    NA    <NA>       <NA> Echinochloa crus-galli
44     5    NA    <NA>       <NA>  Arrhenatherum elatius
           genus         family
2        Adesmia    Leguminosae
10     Dichondra Convolvulaceae
17       Setaria        Poaceae
41   Callitriche Plantaginaceae
43   Echinochloa        Poaceae
44 Arrhenatherum        Poaceae

Now we can compare, for instance, the proportion of species belonging to the family Poaceae (grasses) in the different plant communities.

releves <- trait_proportion("family", releves, head_var="ReleveID",
    trait_level="Poaceae", include_nas=FALSE, weight="cover_percentage",
    in_header=TRUE)

# Compare communities by proportion of Poaceae
par(mar=c(5, 20, 1, 1), las=1)
boxplot(Poaceae_prop ~ community_name, data=releves@header,
    horizontal=TRUE, xlab="Proportion of Poaceae", ylab="")

This graphic is advising us that maybe few of these communities can be considered as grasslands sensu stricto.

The function count_taxa() is defined for calculation of number of taxa at specific taxonomic ranks. Note that this function may be smart enough to aggregate taxa into the corresponding ranks, for instance the calculation of species numbers may also include sub-specific taxa in their respective species (option include_lower=TRUE).

releves <- count_taxa(species ~ ReleveID, releves, include_lower=TRUE,
    in_header=TRUE)

# Compare communities by species richness
par(mar=c(5, 20, 1, 1), las=1)
boxplot(species_count ~ community_name, data=releves@header,
    horizontal=TRUE, xlab="Species richness", ylab="")

Cross tables and Maps

Most of the applications used for floristic comparisons require data in form of a cross table. Furthermore, species composition of communities may be more evident by displaying data, for instance, in a table of species by plots. To arrange data in such a way we can apply the function crosstable().

In order to reduce the data set, we will apply the function subset(), selecting plots of the association Juncetum proceri.

juncetum <- subset(releves, community_name == "Juncetum proceri",
    slot="header")
summary(juncetum)
## Metadata 
   db_name: sudamerica
   description: Database for vegetation-plots from South America.
   taxonomy: sam_splist
   bibtexkey: NA
   object size: 217.2 Kb 
   validity: TRUE 

## Content 
   number of plots: 15 
   plots with records: 15 
   variables in header: 20 
   number of relations: 2 

## Taxonomic List 
   taxon names: 548 
   taxon concepts: 199 
   validity: TRUE 

In the function crosstable() we indicate as formula in the left term the numeric variable used to fill the table, the first right term is the group variable used for the columns and the further right terms are group variables defining the rows of the cross table. Note that the taxa in the formula can be addressed by either one of two keywords, namely TaxonName for the use of original entry names (taxon usage names) or AcceptedName for use of the respective names considered as accepted in slot species. We also set the arguments FUN=max defining the function used to merge multiple occurrences of a taxon in a plot and na_to_zero=TRUE to fill absence.

juncetum_cross <- crosstable(cover_percentage ~ ReleveID + AcceptedName,
    data=juncetum, FUN=max, na_to_zero=TRUE)
head(juncetum_cross)
                         AcceptedName 6236 6237 6239 7285 7423 7643
1    Adesmia corymbosa var. corymbosa  0.5  0.5  0.5   10  0.5  0.5
2                 Agrostis capillaris 10.0 30.0  0.0   15 40.0 20.0
3            Anthoxanthum utriculatum  0.0  0.0  0.0    0  0.0  0.0
4 Arrhenatherum elatius var. bulbosum  0.0  0.0  0.0    0  0.0  0.0
5                Baccharis sagittalis  0.0  0.0  0.0    0  0.0  0.0
6               Centipeda elatinoides  0.0  0.5  0.0    0  0.0  0.5
  6234 6235 6238 6588 6589 6804 6805 7294 7303
1    0  0.0  0.0    0    0  0.0    0    0    0
2   50 20.0 40.0   10   30 20.0   50   20   50
3    0  0.5  0.0    0    0  0.0    0    0    0
4    0  0.5  0.0    0    0  0.0    0    0    0
5    0  0.0  0.5    0    0  0.0    0    0    0
6    0  0.0  0.0    0    0  0.5    0    0    0

When plots are geo-referenced, you can show their locations using the package leaflet.

library(leaflet)
leaflet(releves@header) %>% addTiles() %>%
    addCircleMarkers(lng=~longitude, lat=~latitude, color="red",
        opacity=0.3, radius=1)

Updated on

24-06-2022

Acknowledgement

The data sets and routines demonstrated here have been previously tested by Elena Gómez in the context of her thesis for the degree of MSc. . Any further comments and suggestions are kindly welcomed.

Footnotes

    References

    Alvarez, M. and Luebert, F. (2018) The taxlist package: Managing plant taxonomic lists in R. Biodiversity Data Journal 6, e23635. doi:10.3897/bdj.6.e23635.
    Alvarez, M., Möseler, B. M., Martín, C. S., Ramírez, C. and Amigo, J. (2012) CL-Dataveg a database of Chilean grassland vegetation. Biodiversity & Ecology 4, 443. doi:10.7809/b-e.00230.
    Ellenberg, H., Weber, H. E., Düll, R., Wirth, V. and Werner, W. (2001) Zeigerwerte von pflanzen in mitteleuropa. Göttingen, Erich Goltze.
    Gómez, E. (2020) Explorative and retrospective evaluation of grassland vegetation in Southcentral Chile.
    Ramírez, C., Finot, V. L., San Martín, C. and Ellies, A. (1991) El valor indicador ecológico de las malezas del centro-sur de Chile. Agro Sur 19, 94–116.
    San Martín, C., Ramírez, C. and Ojeda, P. (1998) La vegetación de lagunas primaverales en las cercanías de Temuco (Cautín, Chile). Acta Botanica Malacitana 23, 99–120.
    San Martín, C., Ramírez, C. and Alvarez, M. (2003) Macrófitos como bioindicadores: Una propuesta metodológica para caracterizar ambientes dulciacuícolas. Revista Geográfica de Valparaíso 34, 243–253.